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The Direct Method from Thermodynamics with Finite Speed used for
Performance Computation of quasi-Carnot Irreversible Cycles.

I.Evaluation of coefficient of performance and power for refrigeration
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This paper is dealing with the performances (Coefficient of Performance, COP and Power) evaluation for a
quasi-Carnot irreversible cycle, namely the Irreversible Refrigeration Cycle with Mechanical Compression of
Vapour. The present computation scheme is based on recent developments of the Direct Method from Finite
Speed Thermodynamics (FST). The Direct Method consists in analyzing any irreversible cycle, step by step,
by writing the corresponding equation of the First Law of Thermodynamics for finite speed processes and
integrating it on the whole cycle, for each process. The First Law expression for finite speed processes
includes three of the main sources of internal irreversibilities, namely: finite speed interaction between the
piston and the gas/vapour, friction due to the finite piston speed within the cylinder, throttling processes in
the valves. The new expression of the First Law for processes with finite speed is used here in order to get
equations that relate the vapour properties for each irreversible process that occurs with finite speed of the
piston in the compressor, in a Refrigeration Machine Cycle with Mechanical Compression of Vapour. These
equations are used later for calculating entirely analytically the performances of the cycle, as a function of the
finite speed of the piston and also as a function of other parameters such as: vapour temperatures and
pressures in the evaporator, respectively in the condenser, compression ratio and mass flow rate. Note that
the present analysis will differ from the previously reported one [1], because here the real properties of
vapour in the cycle will be considered, for the first time in using the Direct Method, by using a correction for
departure of vapour behaviour from the behaviour of perfect gases. The previous analysis used only the
perfect gas properties. Therefore, these results can be used for optimization and design of refrigeration
machines and heat pumps.

Keywords: reversed irreversible quasi-Carnot cycle, finite speed processes, Direct Method, refrigeration
machines with finite speed, Thermodynamics with Finite Speed

The optimization of the Carnot cycle is a topic previously
developed by the authors for Carnot and Stirling cycles [2-
4]. The papers [2, 3] present analysis models based on the
Direct Method and the First Law of Thermodynamics for
processes with finite speed [5, 6]. In these papers, the
study was further developed for an irreversible Carnot cycle
with perfect gas as working fluid, achieved in four separate
machines (an isothermal expansion machine at TH, an
adiabatic expansion machine, an isothermal compression
machine at TL and an adiabatic compression machine)
that are connected through tubes and valves, keeping the
expansion ratio constant during the isothermal process at
the high temperature. The analytical results were applied
for a particular set of engine parameters for which
optimum piston speed corresponding to maximum power
and optimum speed corresponding to maximum efficiency
have been found. This sort of computation could help the
designer to improve the performances of such machines.
Recently, a similar model was developed for a Carnot cycle
refrigeration machine. Also, an attempt of validation was
made by using experimental data available for a real
operating refrigeration machine [4].

The present paper analyses a reversed irreversible quasi-
Carnot cycle with vapour (the cycle of Refrigeration
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Machine with Mechanical Compression of Vapour), starting
from the previous works [4] where a reversed irreversible
finite speed Carnot cycle with perfect gas was studied.

The objective of this approach, in comparison with the
others [4], is to take into account the essential differences
between the behaviour of vapour in comparison with
perfect gases, and to analyze the necessary changes in
the model in order to develop a new methodology for
calculating fully analytical the irreversibilities (entropy
generation) and performances (COP and power) of such a
cycle.

The development of this new methodology can lead to
completely analytically sensitivity and optimization studies of
these machines, without using data from tables or software
like Engineering Equation Solver (EES).

Applying the Direct Method to an irreversible cycle
consists in using the mathematical expression of the First
Law of Thermodynamics for processes with finite speed
for each process and integrating it throughout the whole
cycle. This leads to equations of irreversible processes of
the cycle including the finite speed and other characteristic
parameters for the cycle (pressure ratio, temperature ratio,
etc.). Finally, based on these equations one gets the
analytical expressions of the machine performances (COP
and power). The mathematical expression of the First Law
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of Thermodynamics for processes with finite speed,
previously developed [5, 6] includes the main sources of
internal irreversibilities. It is used here for equation
derivation of each irreversible process taking place with
finite speed in a reversed irreversible quasi-Carnot cycle
machine.

This paper and the following one (part II) define a quasi-
Carnot cycle as any reversible or irreversible cycle, direct or
reversed, which departs a “little bit” from a Carnot Cycle. Thus,
Rankine and refrigeration cycles with mechanical
compression of vapour (and corresponding heat pump cycles)
are quasi-Carnot cycles, because they differ from a Carnot
cycle (2-adiabatic and 2-isothermal processes) just on the
small portion which is only isobaric (at high pressure) and not
isothermal. But, let’s not forget, that an important part of this
isobaric process is also isothermal (in the domain of wet
saturated vapour) and all the other 3 processes are exactly
like in the Carnot cycle, respectively one entirely isothermal
(at low pressure) and two adiabatic processes.

In this paper the pressure ratio p.2/p1 (exit-entry of the
compressor) replaces the volumetric compression ratio,
previously used [4]. Also the deviation of vapour behaviour
from the perfect gas is considered (fig. 1 and fig. 2).

quantitatively) the results of TFT can not be used by
engineers in real design and optimization of thermal
machines. That was the very clear message of Moran and
Giftopulous critics [8-10].

Fundamental Equations from Thermodynamics with
Finite Speed [2-6, 12-16]

The Performances (COP and power) for a quasi-Carnot
refrigeration cycle with irreversible processes are computed
based on the First Law of Thermodynamics for processes
with finite speed [5, 6, 11, 12]:

(1)

where the work exchange in irreversible processes is:

(2)

Note that in Thermodynamics with Finite Speed (TFS)
fundamental equations, (1) and (2), there are three
important differences in comparison with Reversible
Thermodynamics: a) - the new property pi –instantaneously
average pressure, b) - the parenthesis in the second term
which takes into account the causes of irreversibilities, c)
- the fact that in eq. (1) there is a factor f which does not
appear in the eq. (2). In the Reversible Thermodynamics
the second term in the First Law Expression is the reversible
work (p . dV), which is the same if referring to the system
or to the surroundings. In Irreversible Thermodynamics
with Finite Speed (TFS) the work introduced in the system
is different in comparison with “external work” done by
the surroundings (or received by surroundings), because
of the friction. Thus, in eq. (2) that expresses the irreversible
external work done on the System (or by the System) by
surrounding, does not appear the factor f which appears
only in eq. (1). This “external work” from eq. (2) is the
essential one to compute in comparison with the “internal
work” from eq. (1), because it gives the chance to get an
analytical expression of the power (developed or
consumed) of any real operating thermal machine.

Each term in parenthesis of eq. (1) and (2) takes into
account one type of internal irreversibility [5, 6, 11], as
follows:

awp / c  - contribution of finite speed of the piston, where
 - adiabatic exponent;

Δpf/ pi- contribution of friction between mechanical parts;
Δpth/ pi- contribution of throttling process through the valves;
where  pi - is a new concept in comparison with  Reversible

Thermodynamics, namely the instantaneously average
pressure in the system.

The factor  f  shows the part of the friction heat that
remains inside the system, 0 ≤ f  ≤ 1. The case f = 0
corresponds to the case when all the friction heat is „lost”
towards the surroundings (at the cold source); the case f
= 1 is the other extreme, when all friction heat remains
inside the system.

In equations (1) and (2), the sign (+) is used for
compression and the sign (-) is used for expansion.

The mechanical friction and throttling losses are
expressed in a similar manner to the case of internal
combustion engines from Heywood [11], adapted by us in
an appropriate way to be included in the expression of the
First Law of Thermodynamics with finite speed applied for
any piston-cylinder machines [5, 6, 12]. Thus, the
application of the Direct Method in a similar way to Stirling
machines, piston compressors, piston detentors and

Fig.1. Vapour Compression Refrigeration Machine: C - Compressor,
Cd - Condenser, DF - Dehydrator

TV - Throttling Valve, Ev – Evaporator

For the first time, the Direct Method is applied here to a
reversed quasi-Carnot irreversible cycle with vapor, as a
vapour compression refrigeration machine. A similar study
was previously done for an irreversible Rankine cycle with
finite speed [1], illustrating analytically and graphically the
deviations of the optimized performances against the
results achieved by Curzon – Ahlborn [7] in the
Thermodynamics with Finite Time. Also the paper [1] have
contained an example of a comparative study of the two
methods, in order to illustrate how the expressions of
efficiency and power of the cycle are different and how
they can be used to evaluate the cycle performance closer
to the real operation one. That comparison have
emphasized that only the Direct Method from
Thermodynamics with Finite Speed (TFS) can do that, by
taking into account the internal irreversibilities from the
beginning (in the equation of The First Law for processes
with finite speed and subsequently in all the equations
deriving from it). The Thermodynamics with Finite Time
(TFT) does not consider the internal irreversibilities, from
the beginning of its development [7], in the so called
“endoreversible cycles”. This was the most important
reason for criticizing it (TFT) and its results by Moran [8, 9]
and Giftopulous [10]. Thus, by “neglecting” the internal
irreversibilities (which are in fact very important



REV. CHIM. (Bucharest) ♦ 63 ♦ No.1♦ 2012http://www.revistadechimie.ro76

internal combustion engines provides for the first time a
“unified treatment” of all of these types of irreversible
machines. The expressions of these losses are:

.
 (3)-(4)

where:
A’=0.94, ; B’=0.045 and C=0.0045 [9].

Note that the expression of the First Law of
Thermodynamics for processes with finite speed, eq. (1),
has been derived by the authors [5, 6, 12-16] by taking into
account the irreversibilities introduced by the Second Law
of Thermodynamics, caused by the piston finite speed.
Therefore, eq. (1) is the essence of Thermodynamics with
Finite Speed, by combining the First Law with the Second
Law for irreversible processes generated by finite speed.
Any research studying irreversible cycle should start with
this equation, in order to take into account the internal
irreversibilities. Hence, a strong tendency of “unification”
of the two Irreversible Thermodynamics branches,
respectively with finite speed (TFS) and with finite time
(TFT) by using eq. (1) and (2) from TFS is in progress [17,
18].

Application of the Direct Method to the irreversible
quasi-Carnot cycle refrigeration machine

The aim of this paper is to compare the reversible cycle
1-2r-3-4r-1 (fig. 2) with the irreversible one with finite speed
1-2irr-3-4irr-1, from the point of view of COP and power.
Equations (1) and (2) can be integrated (analytically) for
any processes in an irreversible cycle with finite speed in
order to obtain the process equations and also the
expressions for the irreversible work and heat exchange in
those processes. For the irreversible cycle with finite speed
from figure  2, eq. (1) is integrated only for the irreversible
adiabatic process 1-2irr, in the compressor. Thus, the
equation of irreversible adiabatic compression in the
compressor is obtained. This equation will contain the origin
of the internal irreversibilities, namely: the finite speed of
the piston and the friction between piston and cylinder.
Based on this equation, the temperature in the state 2irr,
namely T2irr can be computed. Furthermore, the
superheated vapor properties, h2irr and s2irr, as functions of
T2irr and p2 become available by using the table with liquid
and superheated vapour properties. These properties are
necessary for computation of the work consumed in the
compressor.

Nevertheless the use of tables is not our aim, as we
want to obtain a complete analytical scheme of
computation of the irreversible cycle 1-2irr-3-4irr, in a similar
way to the one of the Reversible Classical Thermo-
dynamics, and the previously one done for Stirling machines
[2]. Each process in the irreversible quasi-Carnot cycle
shown in figure 2 occurs in a separate component:
compressor (1-2irr), condenser (2irr-3), throttling valve (3-
4irr), evaporator (4irr-1) (fig. 1). The resulting four
components are assumed to be connected by tubes. In
order to derive an expression easy to apply for expressing
the internal entropy generation, COPirr and power, only a
new equation of the irreversible adiabatic processes with
finite speed in the compressor (1-2irr) is needed here (fig.
2). In the total irreversible process 3-4irr, the enthalpy is
constant: h3=h4irr, and thus, another “new” equation of
this process is not needed. But aiming to get a total
analytical computation scheme the properties h and s on
the limiting curves are expressed as function of pressure
and temperature.

Let’s take the irreversible adiabatic processes 1–2irr (fig.
2). This is an irreversible process with 3 types of
irreversibility causes: finite speed, friction and throttling.
The First Law for processes with finite speed, eq. (1), is
used and integrated by applying the Direct Method in order
to find these equations. Assuming for the first
approximation the hypothesis that the working fluid is a
perfect gas and the adiabatic process condition is imposed,
δQirr = 0, it results from eq. (1):

  (5)

Equation (5) could be integrated in different assumptions
in order to avoid cumbersome calculations. The simplest
method of integration is described below. We denote the
parenthesis that contains the irreversibility causes with

,computed with average
temperature Tmed,1-2 and average pressure pmed,1-2 during the
duration time of the process 1-2irr:

(6)

where the average temperature is expressed as:

   (7)

In order to estimate T2 needed in eq. (7) we assume, in a
first approximation, that T2 = T2r..

The equation for the vapour reversible adiabatic process 1-
2r, yields:

(8)

where:  λp = p2 / p1and  k’  is a corrected adiabatic exponent,
which takes into account the difference between perfect gas
and vapour of R134a, (fig. 3). This corrected k’ exponent was
obtained comparing T2  computed with eq. (8), and T2r
computed based on constant entropy in the reversible adiabatic
process 1-2r, and using tables data for vapour in state 2r. As
result of this computation figure 3 was plotted and the
corresponding analytical formula for k’ was derived.

Fig. 2. Comparison of two Vapour Compression Refrigeration Machine
Cycles in T-s diagram, seen as one reversed reversible quasi- Carnot
cycle 1-2r-3-4r, and the other one a reversed irreversible quasi-Carnot

cycle 1-2irr-3-4irr.

~
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For evaluation of  pmed, 1-2 we use the arithmetic average
between initial and final pressures.

    (9)

Upon substitution eqs. (8) and (9) in eq. (6), it results:

  (10)

Note that eq. (10) takes into account only the contribution
of the finite speed and friction. The throttling into the valves of
the compressor will be taken into account separately.

Once the coefficient B is expressed as a function of the
piston speed and the other gas parameters, we proceed with
a variable separation in eq. (5):

 (11)

where the pressure is expressed from the state equation:

(12)

By taking into account that a corrected specific heat  cv’
which depends on  k’ (the corrected adiabatic exponent) is
used in eq. (11):

(13)

equation (11) becomes:

(14)

This equation is different in comparison with the differential
equation of adiabatic processes from Clasical
Thermodynamics, because of two terms, B and k’. The term
B takes into account the internal irreversibilities as function of
the speed, wp, and the term k’ takes into account the departure
of the superheated vapour in the compressor exit from the
perfect gas behavior. All equations deriving from eq. (14) will
contain these two „corrections”, and they are important results
of the Direct Method where this equation is integrated and the
results are used for performances computation of the
irreversible cycle that is studied.

By integrating eq. (14) for the irreversible adiabatic process
1 – 2irr, one gets:

(15)

which leads to the following equations for the irreversible
adiabatic process with finite speed and friction:

- in coordinates T-V:

   (16)

- in coordinates p-V:

 (17)

- in coordinates T-p:

 (18)

Equation (18) provides the temperature T2irr. After getting
the correlations between the specific enthalpy, h, and the
specific entropy, s, as function of T on the isobaric process
2”-2irr, one can get immediately h2irr and s2irr, necessary for
computation of the irreversible work needed by the
compressor (h2irr – h1). Since 1-2irr is a compression process,
the (+) sign appears in the analytical expression of B.

In this way the analytical expressions for the coefficient
of performance, COP, and power are obtained, analyzing
the successive influence of all the five internal losses.

The COP which takes into account only the finite speed
of the piston in the compressor, COP1 is:

(19)

and the corresponding power is:

  (20)

where the mass flow rate is:

(21)

with: ρ1, the density of vapour in state 1 (fig. 2), ,

the specific volume in state 1 (fig. 2), and, D, the diameter of
the piston (fig. 4)

Fig. 3. Corrected adiabatic
exponent k’ variation versus the
saturation vapour temperature
T2”, respectively pressure p2.
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The COP which takes into account the finite speed of
the piston and the friction in the compressor, COPII, is:

  (22)

and the corresponding power is:

  (23)

The COP which takes into account the finite speed of
the piston, the friction in the compressor and the throttling
in the throttling valve COPIII is:

(24)

and the corresponding power remains Pirr II, as the
compressor and the throttling valve are independent
machine components.

The COP which takes into account the finite speed of
the piston, the friction in the compressor, the throttling in
the throttling valve, TV (fig.1) and the throttling in the
compressor valves, EV and IV (fig.4),  COPIV is:

   (25)

where:

          
(26)

and the corresponding power is:
                      (27)

The COP which takes into account the finite speed of
the piston, the friction in the compressor, the throttling in
the compressor valves (EV and IV), the throttling in the
throttling valve (TV), but also the heat losses qlost  from the
(fig. 1), between heat sources, COPV, is computed with
the following equations. Starting with the definition of COP
one gets:

        (28)

where:
(29)

 (30)

 (31)

with: K - the overall heat transfer coefficient:

(32)

and A is the average area between the corresponding ones of
the evaporator and condenser:

 (33)

Eq. (28) can be written in the form:

 

               (34)

Based on this identification of the terms, one gets:

  (35)
where:

         (36)

ηII, QlostI - the Second Law Efficiency generated by heat
losses between the two heat sources.

Finally the following equation yields:

(37)

By using the expressions from the Table 1, with properties
of the vapour in the main states of the cycle, and introducing in
eq. (37), the final analytical formula for COP is:

(38)

(39)

Fig. 4. Reversible and irreversible pV diagram of the ideal
compressor

where
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The corresponding power remains Pirr III, as the compressor
work is not affected by the heat losses between sources.

In order to calculate the isentropic efficiency of the
compressor, ηis, by using the definition and considering all
internal irreversibilities above mentioned, the following
expression yields:

(41)

Results
The calculations are done considering the following data

for dimensions and properties: L=1m, D=0.05m, Npipes=8,
αe = 7W / m2K, αi = 5W / m2K,  λins = 0.044 W / mK, δins=
0.1 m and AEv = ACd = 0.176 m2.

It was found that the irreversible adiabatic compression
process can be described quantitatively by an adiabatic
equation similar with the reversible one for perfect gases
but corrected with an exponent which takes into account
the difference between gas and vapour, denoted by k’. This
new adiabatic exponent k’ depends on T2” (or p2) and is
different of the reversible adiabatic exponent k = 1.3. In
figure 3 this variation stands out.

(40)

By using the above derived (completely analytical)
formulae for COP and power, the effect of internal
irreversibilities progressively introduced on the cycle
performances are illustrated in figure 5. Thus, the major
reductions of COP are registered when the friction losses
are considered (COPII), respectively the throttling in the
compressor valves (COPIV). As expected, the power needed
by the compressor increases with each new irreversibility.
By comparing the variation of the two performances with
the piston speed, clearly appears that small values of the
piston speed provide economical operational regime,
mainly from the power consumption reason. For example,
when passing from 0.5m/s to 1m/s, the power increases
twice, namely from 300W to 600W. As previously
mentioned, the Power of the compressor does not depend
neither on the expansion process (3-4ir), nor on heat losses
between heat exchangers, but COP depends on the
irreversibility introduced by each of these processes. This
fact explains the existence of 6 curves for COP and only 4
curves for Power in figure 5. Thus, Power PII corresponds
to both curves of COPII and COPIII, while Power PIII
corresponds to both curves of COPIV and COPV.

To highlight the influence of all internal irreversibilities
on the operation of a real refrigerator, we analyzed the
results obtained by varying the temperature TH =T2”. (fig.
6)

It can be noticed that for a constant temperature of the
cooled space TL, and as the superheated saturated vapour
temperature decreases, the work needed for the reversed
quasi – Carnot cycle and the refrigeration efficiency, COP
of the cycle decrease, so seemingly the refrigeration cycle
is more efficient with the decrease of the temperature
difference between sources, as expected.

Following figure 6 it is found that COP decreases with
the increase of T2” and with the increase of the piston speed
wp. It seems that decreasing T2” is a good idea for a better
design, in order to enlarge the COP. Unfortunately this

Table 1
REFRIGERANT PROPERTY EXPRESSIONS IN THE TWO CYCLES MAIN STATES

and
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Fig. 8. Isentropic efficiency in the compressor as function of the
piston speed, wp

Fig. 7. The influence of the factor f on COP

Fig. 5. The effect of different
internal types of irreversibilities on

COP and power (wp=0÷ 2m/s)

Fig. 6. The effect of piston speed wp on COP (1-2irr-3-4irr) in the quasi-
Carnot cycle for various saturation temperatures T2”

conclusion is false because it was not yet taken into
account the effect of external irreversibilities. For example,
with the decrease of T2” the temperature differences
increasingly lowers (at the hot source where heat is
evacuated). This would entail to increase the surface of
the heat exchanger of the condenser, which would involve
additional costs for the construction of the machine and
also larger storage space.

The influence of factor f, showing the part of the friction
heat that remains inside the system, upon COP, is illustrated
in figure 7. An important reduction of COP, about 3 times, is
registered for a given value of the piston speed, when factor
f value passes from 0 to 1.

Based on  eq. (41) and by introducing successively different
types of losses, a gradually reduction of the isentropic efficiency
in the compressor is observed in figure  8. Note that the losses
separating the three curves correspond to those mentioned
for the power calculation, PI to PIII.

Only through a combined analysis which takes into
account both internal and external irreversibilities,
combined with an economic and technical analysis, T2”
can be optimized as well as the COP. This objective remains
to be developed in a future paper. Also another goal could
be a scheme for calculating large refrigerating machine
that uses a piston detentor or a turbine instead of the
throttling valve. It requires a similar analysis to that of the
compressor, also based on the Direct Method, and is under
development in our research group.

Conclusions
Performances calculation for a reversed irreversible

cycle quasi-Carnot machine (Vapour Compression
Refrigeration Machine) is presented. The paper develops
an analysis of internal irreversibilities generation in a
Mechanical Vapour Compression Refrigeration Machine,
operating with finite speed. The results obtained by using
the calculation scheme that was developed based on the
Direct Method from Thermodynamics with Finite Speed,
gave the chance to evaluate the irreversibilities and
performances in a purely analytical manner. For the first
time in the Direct Method analysis of a cycle, the essential
difference between the vapour behaviour in comparison
with perfect gases were taken into account. In developing
the analytical model, irreversibilities produced during the
adiabatic compression (1-2irr), such as finite speed of the
piston, friction, throttling in the compressor valves, and
throttling in the adiabatic expansion (3-4irr) in TV (fig.1)
were considered. The analysis was done here completely
analytic, which means that formulae for COP and Power,
as function of the piston speed wp in the compressor, and
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other parameters (compression ratio λp, vapour pressure
and temperature, mass flow rate, etc) are derived. Also, it
allowed a step by step sensitivity study with respect to the
factors causing internal irreversibilities. Thus, the influence
degree of each cause of irreversibility clearly appeared.
Based on such calculation the designer has a chance to
“see” where to intervene in order to improve the
performances of the whole system. By taking into account
other internal irreversibilities this scheme of computation
can be further developed, and the final goal of validation
achieved. Such a validated scheme of computation could
help the optimal design of Refrigeration Machines and Heat
Pumps.
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Nomenclature
A - area, m2

a - coefficient ( = √ 3k)
c - average molecular speed, m s-1

cp, cv - specific heats, J kg-1 K-1

COP - coefficient of performance
D - diameter, m
f - coefficient related to the friction  contribution ∈ (0, 1)
h -specific enthalpy, J kg-1

K - overall heat transfer coefficient, W m-2 K-1

k - ratio of the specific heats
k’  - corrected adiabatic exponent
m - mass, kg
m - mass flow rate, kg s-1

N - number of pipes
p - pressure, Pa
Δp - pressure loss, Pa
Q - heat, J
q - heat lost per mass unit, J kg-1

R - gas constant, J kg-1 K-1

S - stroke, m
s - specific entropy, J kg-1K-1

T - temperature, K
U - internal energy, J
V - volume, m3

v - specific volume, m3 kg-1

ΔV - volume variation, m3

w - specific work, J kg-1

wp - piston speed, m s-1

Greek symbols
α - convection heat transfer coefficient, - W m-2K
λ -  thermal conductivity, W m-1 K-1

λp - compression ratio in the compressor
δ - thickness of the wall insulation, m
ρ - density of vapor, kg m-3

ηII - second law efficiency

Subscripts
Cp - compressor
Ev - evaporator
f - friction
H - hot-end of the machine
i - instantaneous
ins - insulation
irr - irreversible
L - cold-end of the machine
med - average
r  -reversible
th -throttling
w -finite speed
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