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Is is well known that the complexes of phenoxyacetic acids with transitional metals are very interesting due
to their broad spectrum of biological and pharmaceutical activities. By condensing the hydrazides with
transitional metal salts (Cu, Fe, Cr, Co, Mn), a series of metal complexes are obtained that have been showed
to be efficient for treating various diseases. A complete description of metallic complexes synthesis has
been made by the means of direct and reversed modelling using an established artificial neural network. The
main parameters that influence the process are: molar ratio, temperature and reaction time. The experimental
data were employed in the design of the feed forward neural networks in order to predict the yield of the
process for different reaction conditions (direct modelling) or the process conditions for a predetermined

yield (inverse modelling).
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Acidic hydrazides and their corresponding condensing
products - acylhydrazones - lately catch the eyes of the
specialists in organic and inorganic chemistry due to their
various biological actions. Their complexes with
transitional metals were considered to be very interesting
due to their broad spectrum of biological and
pharmaceutical activities, such as: anti-cancer, anti-
t[um?ur, anti-oxidant and, inhibition of lipid peroxydation

1,2].

This fact increased our interest in this class of
compounds, so we started to study a series of complexes
combination with the following general formula:

Me= Cu, Ni, Cd, Co, Sn, Cr, Mn, Fe, Ti;
X= Cl, (CH;COO)y; Ry, Ry=-Cl, -CHj, -H; R; R, = -H, -C4H,

Fig.1. General formula for metal complexes

By condensing the hydrazides with transitional metal
salts (Cu, Fe, Cr, Co, Mn), a series of metal complexes are
obtained that have been showed to be efficient for treating
various diseases [3-5]. Drugs that include Cu complexes
are used for inflammatory processes, for treating ulcers,
convulsions, cancer and diabetes. Fe is an element required
for cells to live and is a constituent of hemoglobin and
other ferments included into enzymes. Co is a bioactive
element included in B , vitamin and is required in blood
formative processes. Cr is necessary for the body to act as
a stimulator, participating in nucleic acids transformations,
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in lipids and fermentative processes. Mn is part of some
ferment and activates destructive processes for proteic
substances.

The design of control and process monitoring systems
is currently driven by a large number of requirements
imposed by energy and materials costs and the demands
for robust fault-tolerant systems. These considerations
introduce extra needs for effective process modelling
techniques. Many systems are not amenable to
conventional modelling approaches due to the lack of
precision, formal knowledge about the system, due to
strongly nonlinear behavior, high degree of uncertainty, or
time-varying characteristics. The Artificial Neural Network
(ANN) has been recognized as a power tool which has the
remarkable ability to derive meaningful information from
complicated or imprecise data. It can be used to extract
patterns and detect trends, which are too complex to be
noticed by other computational techniques [6].

The objective of this study is to predict the optimum
yield for many working conditions by direct neural network
modelling. Further, by inverse neural modelling, for an
imposed yield value, the reaction parameters were
determined.

Overview on ANN

Neural networks, inspired by the information processing
strategies of the human brain, are proving to be useful in a
variety of engineering and, especially, chemical engineering
applications [6, 7, 11].

ANN may be viewed as paralleled computing tools
comprising of highly organized processing elements called
neurons which control the entire processing system by
developing association between objects in response to their
environment. The researches have proposed many
architectures of the network. The most popular neural
network architecture in engineering investigations is the
multilayer perception (MLP% [12, 13].
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A typical MLP, consists of a layer of input neurons being
as a data gateway to the network, one or more hidden
layers of neurons processing the data received from the
input layer and finally a layer of output neurons receiving
the processed data and providing the final responses. The
network is trained how to correlate the input and output
through numerous data in a supervised training process.
In this study, the back propagation training algorithm has
been utilized in feed-forward the one hidden layer [14].
Back-propagation algorithm, as one of the most well-
known training algorithms for multilayer perception, is a
gradient descendent technique to minimize the error for a
particular training pattern in which it adjust the weights by
a small amount at the time [13].

Once the network is trained, it can be tested on a
different set of data than that used for training. It is a good
approach to divide the given input/output data into two
parts: one part (>70%) issued for training, whereas the
other part is used for testing the neural network model.
The testing data set is reserved to validate the trained
network [15].

In order to make the statistical analysis of the
performance (prediction capacity) for the neural model,
the following parameters have been used:

- Medium Square Error (MSE) that must be as close as
possible to zero:

MSE= |3 (x, -]
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where:

X, is the measured value in experiment i (experimental)

n - number of experimental sets

X - average value for experimental results.

- Linear Correction Coefficient, r, between the
experimental data and neural predictions that is calculated
with the following relation:
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For a better correlation, r must be as close as possible to
the unit (1).
- Percentage Relative Error:
e (%)= Xanwi ~ Kexpi

exp,i

Neural modelling has been made by using the
Neurosolutions applications.

Results and discussions

Starting from the hydrazides of sulfonamidated
phenoxyacetic acids and by taking their biological action
into account we've obtained some metal complexes by
treating the hydrazides with chloride or acetate of some
transitional metals. In order to synthesize the complexes,
the ligand (hydrazide) is treated with metal salt in organic
solvent, under heating. The experimental method has been
previously printed [8-10].

The obtaining reaction is presented in figures 2 and 3.

For direct modelling, the input parameters are: the molar
ratio o-(2-chloro-4-sulphonamido- fenoxy) propyonil
hydrazide/cobalt acetate (x ), the reaction time (x,), and
the temperature (x,). As output parameter the global yield
(y) has been con51d3ereded Thus, the resultlng architecture
MLP will have 3 neurons in the input layer. The
experimental data required for the mentioned parameters
have been collected [9].

The parameters for the molecular modelling are:

-activation function SigmoidAxon,

-learning algorithm (learning-rule) Levenberg-
Marquardt,

-number of epochs- 20.000 epochs,

-precision 0.00001 (threshold value).

The best neuronal model has been determined through
the trial-error method and it is MLP (3:4:1). Network
training exhibit a good statistical characterization, as
concluded from table 1.

Table 1
STATISTICAL CHARACTERIZATION FOR TRAINING MLP(3:4:1)

Performance y
Mean Squared Error, MSE 4.4501e-23
Mean Absolute Error, MAE 5.41816e-12

Linear Correlation Coefficient, r 1

R
>N-50, _
Ry’ Fig.2. Complexes obtained from
hydrazides
“w Ry

(0]
Il

N—NH C—CH,—

Fig.3. Reaction scheme for
synthesis of our complexes
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Fig.4. Predictions of MLP(3:4:1 ) compared to the experimental data
for the training stage

Training performances are clearly observed in the
diagram presented in figure 4.

For validation a new set of experimental data have been
used to train the network. The MLP (3:4:1) network
generated the values for global yield (the answer) for the
studied system. The obtained results (table 2) showed that
the neural model exhibit a good prediction capacity and is
able to generalize the connections between input variables
and the output ones (fig. 5).

The good results obtained during the validation step
enable us to use the neural model in order to make the

Table 2
EXPERIMENTAL DATA FOR VALIDATION OF THE NETWORK

Performance y
Mean Squared Error, MSE 3.609¢-06
Mean Absolute Error, MAE 0.00112382
Linear Correlation Coefficient, r 0.999999996
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Fig. 5. Comparations between experimental data and MLP (3:4:1)
predictions for the validation stage: O - experimental ,
= - RNA

corresponding predictions for other values for the reaction
parameters, different from those used in experimental
protocol. In order to verify this ipothesis, values for the
independent variables around the optimum 97.08% for
global yield have been considered. The obtained result are
presented in figure 6 and table 3.

Obtained data confirm that the variation of the molar
ratio o-(2-chloro-4-sulphonamido-fenoxy) propyonil
hydrazide/cobalt acetate (M) strongly influences the global
yield, while reaction time and temperature, respectively,
have less effect. About the molar ratio, it is observed that it
exhibit an optimal value that assure the maximum global
yield for the chemical reaction.

As previously shown, the predictions are in very good
correspondency with the experimental data. The predicted
values inside and outside the experimental range abide by
the tipical conduct for the studied process [9].

For the inverse neural modeling the values for the global
yield, reaction time and temperature have been dictated
and the value for the molar ratio have been determined,
because the molar ratio has the stonger influence for the
global yield.

The same parameters have been used as in the direct
modelling, as shown above. Using the mentioned
((:ondigions, the neural model obtained has been MLP

3:7:1).

100

Global yield, %

Fig. 6. Estimated curves by the means
of direct neural modeling for time=10
and molar ratio (M): 1- M=25, 2-M=30,
3-M=35, 4-M=40 ; time=20 and
5-M=25, 6-M=30, 7-M=35, 8-M=40.

Molar ratio

Temperature/molar Time=10

Time=20

ratio (M) 25 30 35 40 25

30 35 40

1.5 | 49.87928 | 60.64848 | 71.76198 | 56.79201 | 31.56872

52.62877 | 77.34586 | 48.65963

1.6 | 51.30338 66.893 | 76.85226 | 62.1763 | 32.89022

64.19834 | 78.33543 | 49.73568 Table 3

1.7 [ 53.43934 | 74.72163 | 80.55157 | 65.86286 | 35.38023

75.2756 | 77.55747 | 50.30735 PREDICTIONS OF MLP

1.8 | 56.67579 | 82.86332 | 82.65435 | 67.96691 | 39.92807

83.67096 | 75.33121 | 50.43167 3:4:1)

1.9 | 61.47752 | 89.52833 | 83.33686 | 68.81231 | 47.49398

89.08942 | 72.02275 | 50.19034

2 68.16 | 93.84376 | 82.88283 | 68.71471 | 58.08265

92.29705 | 68.09442 | 49.67237

2.1 | 76.34439 | 96.19593 | 81.56026 | 67.92422 | 69.74826

94.11331 | 64.03363 | 48.96286

2.2 | 84.53201 | 96.36061 | 79.6035 | 66.63034 | 79.7447

95.08624 | 60.2231 | 48.13656

2.3 1 90.90989 | 96.52007 | 77.2157 | 64.97952 | 86.76106

95.51609 | 56.87022 | 47.25477

2.4 | 94.84049 | 96.67107 | 74.56501 | 63.08966 | 91.13166

95.53409 | 54.02828 | 46.36465

2.5 | 96.90341 97.08 | 71.78074 | 61.05905 | 93.71954

95.15115 | 51.65998 | 45.50015

2.6 95.8 | 96.98152 | 68.95638 | 58.9707 | 95.23752

94.26989 | 49.69327 | 44.68383

27 95.12 | 95.39843 | 66.15812 | 56.89375 | 95.13345

92.67289 | 48.05356 | 43.92907

2.8 94.2 | 94.48686 | 63.43418 | 54.88365 | 94.96202

90.0195 | 46.67681 | 43.24233

29 94.02 | 94.87409 | 60.82168 | 52.98204 | 94.86335

85.92662 | 45.51224 | 42.62507

3 [93.79039 | 92.19629 | 58.3501 | 51.21736 | 94.11326

80.22266 | 44.52078 | 42.07546
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Table 4

STATISTICAL PARAMETERS
Performance x
Mean Squared Error, MSE 0,000605543
Mean Absolute Error, MAE 0,017898657
Linear correlation coefficient, r 0,999347546
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Fig.7. Performances of training MLP(3:7:1)

Statistical parameters that testify the quality of the
established neural model are presented in table 4.

Performances of the neural model are marked in figure
7.

The results for the validation step are shown in figure 8.

Model MLP(3:7:1) have been used to establish reaction
parameters required in order to obtain a maximum global
yield of 97.1%. The obtained results are gathered in table 5.

As shown in table 5, the obtained results confirm the
fact that for the studied reaction the global yield value of
97.08% is obtained for a molar ratio a-(2-chloro-4-
sulphonamido-fenoxy) propyonil hydrazide/cobalt acetate
equal to 2.5, a reaction time of 10 min and temperature of
30°C.

Conclusions

For the studied condensing reaction a study of direct
and inverse neural modeling has been made, for which the
following experimental parameters were considered: the
molar ratio o-(2-chloro-4-sulphonamido- phenoxy)
propyonil hydrazide/cobalt acetate (x ), the reaction time
(x,) and the temperature (x,). As output parameter the
global yield (y) has been considered.

Neural networks were designed by testing more
topologies and by evaluating their performances.

Neural model for the direct modelling is type MLP
(3:4:1), and for the inverse one is MLP (3:7:1).

Direct neural modeling showed the maximum value for
the yield (the optimum) to be 97.08%.

Inverse neural modelling provided us with the required
experimental values for the parameters in order to obtain
the maximum yield which are: molar ratio o-(2-chloro-4-
sulphonamido-phenoxy) propyonil hidrazide/cobalt acetate
= 2.5, a reaction time of 10 min and temperature of 30°C.

Optlmum stability analysis made by using the neural
model MLP (3:4:1) showed that the found optimum value
is stable for temperature variations between +5°C,
variations for molar ratio of 0.1 and reaction time of =+ 2
min.

Thus, the precise predictions obtained using simulations
on the neural model are complete information, certain and
necessary in order to optimally lead organic synthesis
processes.
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Fig.8. Testing performances: white- experimental, grey- models

prediction
Temperature, Reaction Molar
Yield, % °Celsius time, min ratio
37 40 15 2
48 30 20 1 Table 5
59 45 10 1.9 PREDICTIONS
62 30 15 3 PROVIDED BY
77 35 20 18 MLP(3:7:1)
83 40 10 2
89 35 15 2
96.9 30 10 2.5
97 30 10 2.5
97.08 30 10 2.5
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