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Thermodynamic models are solid foundations for many theoretical investigations of mulficomponent systems.
Beside of cumbersome theoretical approaches necessary to develop new insights in this context of potential
support is the integration of artificial intelligence innovative ideas. The paper implements a novel procedure
of the artificial intelligence based on support vector machine in a minimax approach. The main goal of the
paper is to compare the performance of the novel procedure with artificial neural nefworks or other theoretical
approaches and to promote it as an effective technique for thermodynamic analyses. Comparative results
demonstrate the capability of the proposed procedure to be used by engineers dealing with multicomponent
systems analysis but also its potential application in other engineering fields.
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The development and processing of new materials are
dynamic and complex fields. Although scientific
investigations have produced basic knowledge of the
underlying phenomena many problems still remain
unsolved, where quantitative deterministic
characterization or theoretical approaches are dismally
lacking or are cumbersome.

The knowledge of thermodynamic properties for
multicomponent solid solutions systems are still of great
interest to understand the physical chemistry of the
underlying phenomena [1-8]. Despite of the recent
important advances theoretical methods cannot always
fulfil in a satisfactory manner all the demands. Within this
context, over the past decades intense effort has been
constantly devoted to bring ideas and methodologies from
the artificial intelligence filed into solving engineering or
scientific problems. It is well known that artificial
intelligence procedures are capable of replicating a lot of
varieties of non-linear relationships of considerable
complexity and avoid uncertainty in input parameters. It is
commonly recognised the ability of these methods to
model parameters, predict properties or trends of interest
or to investigate cases of new phenomena where the
information cannot be easily described theoretically or
without the physics, chemistry or biology being explicitly
provided. Among the well known artificial intelligence
techniques developed during the last decades the following
approaches may be pointed out: artificial neural networks,
genetic algorithms and support vector machines. The
application of artificial neural networks (ANNs) in many
domains has been a rapidly growing field. The most
important limitations of ANNs procedures are: (i) sensitivity
to the dimension of available data, over-fitting and local
minima, (ii) accuracy, not directly linked by the ANN
architecture (number of layers and number of neurones in
the hidden layers), (iii) inability to adequately identify
unnecessary weights in the network, (iv) their intrinsic
nature as a black-box thinking. To overcome these
drawbacks of the artificial neural networks the present
work is proposing the support vector machine (SVM) in
minimax approach. Important incentives of the support
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vector classifier (that is primarily a two-class classifier)
over the ANNs are: (i) being a non-parametric classifier
makes no prior assumptions concerning the data
distribution, (i) provides better accuracy even with a small
number of training samples and is fast and simple in
implementation, (iii) avoids the specific ANNs problems
such as over-fitting and local minima, (iv) it has a relative
explicitly nature. A major drawback of the support vector
machine consists in simple assessment of the same
covariance for each class and thus the margin should be
defined in a local way. The main advantages of the support
vector machine in minimax approach are: (i) avoids the
drawback of SVM consisting in the simple assessment of
the same covariance for each class and defining the
margin in a local way, (i) unlike SVM, for which the closest
points to the decision boundary are most important, the
minimax approach looks at the margin between the
means of both classes, (iii) provides an explicit direct upper
bound on the probability of misclassification of new data,
without making any specific distribution assumptions and
(iv) obtains explicit decision boundaries based on a global
information of available data.

The support vector machine and minimax approach,
named minimax probability machine classification, has
become an active research topic. There is a rich literature
on this subject [9-17]. To provide predictive power for the
minimax probability machine classification a new
regression model was built for maximising the minimum
probability of future predictions, such as to keep them
within some bound of the true regression function. The
authors [15] referred to this regression framework as the
minimax probability machine regression. Based on these
procedures the present work develops and implements in
the MATLAB object oriented language a minimax decision
procedure. The procedure casts both classification (class
labels as outputs) and regression algorithms (numerical
values as outputs) into a global unified technique. The aim
is to introduce and compare the performance of the
proposed procedure (minimax decision procedure) with
theoretical approaches or traditional procedures such as
the artificial neural networks. Another significant target is
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to demonstrate the feasibility of the minimax decision
procedure in such kinds of scientific applications.
Fundamentals and basic principles were presented
elsewhere [18-20]. According to these previous
developments, probabilistic certainty of the predictions may
be also obtained.

In the present work the thermodynamic significance of
the results is not considered as the main task and therefore
was not thoroughly investigated. Similar approaches based
on suppotrt vector machine in minimax approach applied
in the filed of thermodynamics of multicomponent solid
solution system have not yet been reported. In a
comparative manner, a numerical experiment based on
data reported in related studies [5] is used to show
incentives of the proposed approach. Based on expression
of the excess Gibbs energy of the mixture and partition
function, the related work [5] predicts the thermodynamic
properties in a multicomponent solid solution system using
only binary activities parameters or infinite dilute activity
coefficients. Our experiment replicates [5] and compares
the performance of the proposed procedure with the well-
known artificial neural networks approach and theoretical
achievements involving the molecular interaction volume
model. The experiment deals with the prediction of the
activity coefficients to describe the thermodynamic
propetties for the solid solution of C-Fe-Co-Ni system. Good
results point out the efficiency of the proposed minimax
decision procedure based on support vector machine in a
minimax approach for multicomponent systems analysis.
It is worthwhile to mention that, by proper developments,
this minimax decision procedure has a large potential to
be applied in many other engineering fields.

Procedures implementation
Implementation of the minimax decision procedure

The main targets of this minimax decision procedure
consist in getting predicted values of interest without
directly using the explicit relational information, together
with obtaining classification and probabilistic certainties.
Every time it is possible, the procedure is conducted in a
manner of a data mining application. In a way specific to
common data mining procedures, the error may be
estimated by testing rather than by calculation. To carry
out the most basic testing method (simple testing) a
random percentage of the database (10-30%) is set aside
and not used in any way in the model building and
estimation (training). This set, named testing data, will be
used for the final test of the procedure. The remaining set
of data is used during the training step (learning and
validation) in order to build the model. Figure 1 presents a
general framework of the global minimax decision
procedure. The implementation was developed as a user-
friendly computer application in MATLAB software
environment and works in a multiple step and cyclic
approach. Computer programs were coded in a convenient
way to find the best results or the best case over a number
of “k” cyclic experiments (simulations). The best case over
these experiments and the corresponding output values
emerged from the minimax probability machine
regression, equations [19,20], was defined as the sample
model. Formally, it represents the best procedure and
outputs for some particular task. To ensure accuracy and
stability of the procedure the sample model is generated
based on data randomly divided into a number of distinct
training (learning-validation) and testing subsets.
Subsequent to its establishment, the model is used for
further simulations and for predictions on the testing data
(the subset randomly extracted from the total database).
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This final step stands for a global testing step of the
procedure. Long random trials (k > 100) do not get
improved accuracy or more reliable predictions. Taking this
aspect into account, it was considered appropriate to obey
recent statements [16,17] and to work with a reduced
learning set, i.e. to limit the trials to k = 50...100. The
performance of the procedure was investigated in detail
based on the following criteria:

- empirical correlation factors ERC (M
- relative errors
RE =100x Ypredicted - Ytest / ‘Ypredicted [%] @

- simple equivalent linear dependency between
predicted and corresponding testing values, shown as a
linear regression equation described by:

Ypredicted =Yg +b (&)

Consequently, better predictions means a index close
to unity and b index close to the zero value. The
performance criteria are evaluated with all values brought
back into the original R space. The probabilistic certainty
of predicted values was obtained according to a minimax
development with convergence towards the mean [18,19].
Basically, the probabilistic certainty was achieved in a
binary classification manner. The data for binary
classification are given based on the limit state function:

Y. .
LSF = Predicted =1+Ac¢. (4)
Y1,
est

A decision regarding the probabilistic certainty of
predicted values should be done by separating the values
of the limit state function reported at unity, with a
confidence value of £Ae. A confidence value of £Ae =
0.05 corresponds to a confidence interval around 95%. As
it was previously stated [13,14], the performance of the
presented procedure might be completed with the test set
accuracy (percentage of well-classified test data) and the
lower bound a on correct classification of future data. In all
experiments the lower bound on the correct classification
of the future data must be smaller than the test set
accuracy. As a result, the lower bound is not violated and
the linear approach is robust.

An empirical but heuristic principle was applied for
setting the type of the kernel function. The kernel type that
yields to the best performance, assessed by equations (1-
3), was put aside and considered for the final testing. The
proper size and selection of the training set (divided into
learning and validation subsets) is very important to
produce optimal results and to increase the performance
of the algorithm. So far, there are no uniquely agreed and
generalised approaches to choose the suitable dimension
and the selection of the training set. However, it is a
commonly agreed statement that the training set must be
sufficiently large compared with the number of features.
In the present study the procedure was conducted in a
basic manner, without features and outliers selection or
reduction.

Artificial neural networks implementation

Founded on an idealised model of the biological neuron,
the calculation paradigm of ANNs is able to represent
information on complex systems. The main characteristics
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Define INPUTS of minimax probability machine
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e simple equivalent linear regression

Ypredicted =a-Yigy +b

A. Evaluate the results of the minimax probability machine

B. Establish the best set of prediction as model or OUTPUTS

5

Define OUTPUTS of minimax probability
machine regression Y,,,gd,-md, Y test as
INPUTS for mimimax probability machine
classification to obtain probabilistic certainty of
the predictions

;

Fig. 1. Basic framework of the
minimax decision procedure

Perform mimimax probability machine classification:
. Y .
e limit state function of classification, LSF = M
Ytest

e perform classification

How.b)=wT 2=

e estimate probabilistic certainty of the predictions

=1%A¢

o size of learning and validation set, type of kernels, confidence value Ae

!

Evaluate the performance of mimimax
probability machine classification
e  test set accuracy
e lower bound on correct classification of
future data

Qutput
Layer

Hidden layer

Hidden layer

Fig. 2. Basic triple-layer ANN structure

of the ANNs model are the inputting of information (signals)
from exterior or other units of the network, feeding it to the
given unit (neuron) that processes it and then sending it,
as output, to other units or output of the network. For the
generic case, the weighted connection paths link every
two neurons to each other, the weighting structure providing
the total network performance. The main benefits of the
ANNs approach consist in its remarkable ability of learning,

eneralisation and robust behaviour in the presence of noise
f21-23]. As a consequence, the ANNs may be successfully
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used for modelling systems in which detailed governing
rules are unknown or are difficult to formalise, but the
desired input-output set is known [24]. They also present
incentives for cases when input-output data are noisy and
when high processing speed is required. The ANNs
prediction capability of generating new output values for
given inputs is greatly appreciated. The artificial neural
networks approach was implemented by means of the
Neural Network Toolbox from MATLAB 7.2.0 software
package. Based on the feed-forward ANN architecture
various designs of ANNs were experimented. They had
different number of neurons, architecture with single or
double hidden layers and different transfer functions.
Consequently, a triple-layer feed-forward ANN with tansig,
tansig and purelin activation functions (for the hidden and
output layers) and the back-propagation training algorithm,
has been employed for computing the network biases and
weights, (fig. 2). For the output layer the linear transfer
function was applied. The hyperbolic tangent sigmoid
transfer function was implemented in the hidden layers:

1 —X

Flo)=—=

d 5=, +0)
oo an x—%ui-wi-i- 6)]
For predictions presented in the following numerical
example, the ANN input layer has 4 neurons, in the hidden
layers 7 and 2 neurons have been used and the output
layer consists in one neuron. The number of nodes in the
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Table 1
INPUT VARIABLES FOR THE PREDICTION OF THE ACTIVITY COEFFICIENTS [5]

Variable Mean Standard Minimum  Maximum
deviation value value
Xc 0.013111 0.006997 0.006 0.037
XFe 0.33853 0.19793 0.094 0.794
Xeco 0.31958 0.19918 0.085 0.796
Xni 0.32856 0.20289 0.083 0.791
Inyc 4.0767 0.4879 2.865 4.844
Table 2

THE MAIN PARAMETERS OF SIMULATION AND RESULTS
OF THE MINIMAX DECISION PROCEDURE

! Parameters
Original data base (ODB)

Training (learning-validation) set size
Cycles of simulation
Test set size

procedure

Empirical correlation factor
Relative errors [%] (eq. 2)
Coefficients of equivalent linear
dependency eq. (3)

Probabilistic certainty of predicted
values

Confidence value #4¢ (eq. 4)

Test set accuracy [%]

future data [%]

Kernel functions for minimax regression

Performance of the procedure reported for the final testing

Lower bound on correct classification of

Example [5]

Variables (columns) = 5
Samples (rows) = 36
70% of ODB

k=50

30% of ODB

Kx;x )= (x;x ; +1)¢

0.933...0.999
2.844...0.192
a=0.982
b=10.071
0.833

0.050
86.73
83.82

hidden layer has been set on the basis of a trial and error
process. The quasi-Newton Levenberg-Marquardt
algorithm was employed for training the ANN [23]. Over
fitting has been avoided by early stopping. During the
repeated presentations of the training data set in the
training steps, random initial conditions have been used
for the weights and biases in order to prevent the
convergence to undesired local minima. With the aim of
improving the training procedure all input-output training
data have been normalized using the maximum and
minimum values of the input and output sets of data. In a
specific way of data mining procedures, the entire set of
available data (input-output pairs) has been first divided in
two sets: one set used for training the ANN and a second
set used for the testing and performance assessment of
the trained ANN. The set of data used for training has been
further randomly divided in two subsets: one subset (input-
output pairs) directly used for the learning procedure and a
second validation subset used for preventing over fitting by
the early stopping method. Once the training step was
completed, the trained ANN model was established and
premises for using it in the predicting applications was
accomplished. The best-trained ANN, according to the
results obtained for the training-validation set, has been
further used for making the predictions on the not yet seen
testing set. The ANN performance was investigated based
on the same criteria and the same set of testing data as
those previously presented at the minimax decision
procedure.

Numerical applications and results
The numerical example follows a study presented by
Tao [5] and predicts the activity coefficients of carbon in
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the quaternary solid solution of C-Fe-Co-Ni system. In the
original paper the activity coefficients (In_.) of carbon (in
the quaternary solid solution C-Fe-Co-Ni, at 1273K) were
predicted based on cumbersome materials science theory.
They were determined as binary activities or infinite dilute
activity coefficients. The predicted output was obtained
using a model having the generic form of a function with
input variables, the molar fractions of components C, Fe,
Co and Niin the solvent alloy C- Fe-Co-Ni. Predictions have
been further compared with the experimental data. The
database is relatively small and consists of only 36 samples
of activity coefficients, considered as outputs, and 36
samples of 4-dimension vectors (molar fractions of
components), considered as inputs. Despite the small size
of the database a simple testing based on the randomly
set aside testing set of data it is still possible. Table 1 shows
the details of the data used in the simulations.
Whenever it was possible the two comparative
procedures, artificial neural networks and minimax
decision procedure, were conducted based on the same
training and testing data sets. It was convenient to extract
a 30% fraction from the database and to set aside. This
randomly selected data set was intended to the final testing-
performance of both the minimax decision procedure and
the artificial neural networks processing, in a comparative
assessment. The main conditions of the simulations and
results are presented in tables 2 and 3. In the minimax
decision procedure implementation a kernel type having
the form of a polynomial with unit offset (table 2) was
proved to work very well for performing the predictions.
The performance of both procedures was established
based on: values of relative errors (eq. 2), simple equivalent
linear dependency between predicted and corresponding
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testing values (eq. 3) and comparative dependency
between predicted and testing values. The performance
was evaluated on the testing set of data (the set extracted
from the database at the beginning of the random and
cyclic procedure). The performance was reported alike
only to the values of carbon activity coefficients in the
quaternary solid solution [5].

Results are comparatively presented. Figure 3a presents
the values of the relative errors (eq. 2), reported to the
theoretic values obtained where molecular interaction
volume model was used [5]. The others, figure 3b and
figure 3c present the values of the relative errors (eq. 2),
reported to the predicted values obtained from the minimax
decision procedure and the artificial neural networks
approach. Figure 4 presents the comparative
dependencies between the experimental results and the
results reported for the predicted values of carbon activity
coefficients in the quaternary solid solution (fig. 4a) and
respectively dependencies of the activity coefficients
obtained based on predicted values from minimax decision
procedure and the artificial neural networks approach (fig.
4b-4c) [5]. Atfirst glance, the minimax decision procedure

results and the theoretical emerged results are in a
reasonable good agreement, but the predictions obtained
by the minimax decision procedure seem to be superior to
those obtained by the theoretical approaches [5].

Based on the high values of correlation coefficients,
reduced relative errors and good linear dependency
between predicted and testing values (table 2-3) it may be
concluded, in a basic evaluation analysis, that performance
of the minimax decision procedure is reasonable. Taking
into account the robust mathematical nature of the
proposed procedure and its way of development, i.e. being
achieved without the need of direct or explicit relational or
theoretical information, it may be concluded to be
appreciated for its predictive power. When analysing and
comparing the results between the ANN and the minimax
decision procedure a good agreement may be observed.
As the results and figures show, relatively reduced
differences are noticed. Generally, all these differences are
within 5-10 %. These results demonstrate the real capacity
and good accuracy of the proposed procedure and confirm
its important predictive capacity.

Fig. 3. Comparison between relative errors of
the activity coefficients

a. Relative errors computed based on

theoretical values presented by Tao [5];

b. relative errors computed based on values of
the minimax decision procedure; c. relative
errors computed based on values of the
artificial neural networks approach
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Parameters Example [5]

Original data base (ODB) Variables (columns) =5
Samples (rows) = 36
Training (learning-validation) 70% of ODB

set size

Test set size 30% of ODB
Transfer function for hidden l—e
layers F(x)= lee X

Empirical correlation factor 0.995
Relative errors [%] (eq. 2) 2.604...0.037
Coefficients of equivalent a=10.960
linear dependency eq. (3) b=0.180

and x=§::(ul-'wi+b)

Performance of ANN reported for the final testing

Table 3
THE MAIN PARAMETERS OF SIMULATION
AND RESULTS FOR THE ARTIFICIAL
NEURAL NETWORKS APPROACH

Conclusions

The presented example and the results emphasise the
ability of the proposed minimax decision procedure to
make good predictions in the thermodynamic
multicomponent systems analysis. All the predicted data
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were situated within a 95 % confidence interval close to
the desired values. As it was foreseen and then proved, the
capacity of the minimax decision procedure is good over
the entire set of investigated cases. For the best-obtained
outputs, denoted as the sample model, the capacity of the
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procedure is reasonable, and its performance is at least as
good or even superior to the ANN approach. The depicted
example points out the real potential of the proposed
approach for being successfully implemented in
thermodynamic analyses of multicomponent systems.
Despite the facts of minimax decision procedure: (ig seems
to be less known like ANN approach, (ii) on this relatively
small database produces results not significantly superior
to ANN approach, it proved its potential in thermodynamic
analysis. Main advantages of the procedure are: (i) may
work properly with a reduced learning set, (i) needs relative
few science-phenomena knowledge and avoids
cumbersome theoretical approaches, (iii) alike ANN
approach is able to investigate new phenomena where
the information cannot be easily accessed theoretically or
directly by explicitly relational descriptions, (iv) alike ANN
approach makes possible property or trend predictions.
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