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Process monitoring is made difficult when measurements are subjected to errors, since pertinent information
is hidden in the measurement noise. To address this issue, one can use model based data validation, or rely
on statistical techniques to analyze large historical data sets (data mining). An industrial case study is
presented here, where a model based approach (data validation) is compared to data driven techniques.
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Current methods for process monitoring

Efficient process monitoring is a key issue in plant
operation. However operators have to deal with
measurement uncertainty, and take appropriate actions to
address measurement errors.

Some sources of measurement errors depend on the
sensors themselves:

intrinsic sensor precision is limited, especially for online
equipments where robustness is usually felt more
important than accuracy ;

sensor calibration is seldom performed as often as
would be desired, since this is a costly and time consuming
procedure, requiring competent manpower ;

signal converters and transmission add noise to the
original measurement ;

synchronization of measurements may also pose a
problem, especially for chemical analysis, where a
significant delay exists between the sampling and the result
availability.

Other errors arise from the sensor location or influence
of external effects: for instance the measurement of gas
temperature at the exit of a furnace can be influenced by
radiation from hot wall in the furnace. Inhomogeneous
flow can also cause sampling problems: a local
measurement is not representative of an average bulk
property.

Afurther source of error when calculating plant balances
is the small fluctuations in the plant operating conditions
and the fact that samples and measurements are not taken
exactly at the same time. Using time averages for plant
data partly reduces this problem.

Process state, including the value of KPI (key
performance indicators), must be assessed with suitable
precision to enable the optimization of operating
conditions. Drifts in process efficiency have to be detected
as early as possible, and faults have to be identified. Two
strategies can be adopted for efficient process monitoring:
one based on a first principle process model, used to
reconcile measurements, or one based on feature
extraction from a large historical data set.

Data validation [1, 2] uses sensor redundancy and a
plant model to reduce measurement uncertainty and to
calculate all non measured state variables of the system.
Data validation is nowadays routinely performed for steady
state processes and commercial software is available to

* email: Ph.Mack@Pepite.be
REV. CHIM. (Bucure®ti) ¢ 58 ¢ Nr.4 ¢ 2007

implement it online [3, 4]. The data validation procedure
comprises several steps.

The first one is the measurement collection. In well
instrumented plants, this is nowadays performed routinely
by automated equipment.

A second step is conditioning and filtering: all
measurements are not available simultaneously, and
synchronization might be required. Some data are acquired
at higher frequency, and filtering or averaging can be
justified.

A third step is to verify the process condition, and the
adequacy of the model: for instance if a steady state model
is to be used for data reconciliation, the time series of raw
measurements should be analyzed to detect any significant
transient behavior.

The fourth step is gross error detection: the data
reconciliation procedure to be applied later is meant to
correct small random errors, thus large systematic errors,
that could result from a complete failure of a sensor, should
be detected first. This is usually done by verifying that all
raw data remain within upper and lower bounds. More
advanced statistical techniques, such as principal
component analysis, can also be applied at this stage. Ad
hoc procedures are applied in case some measured value
is found inadequate or missing: it can be replaced by a
default value, or by the previous one that was available.

The fifth step checks the feasibility of data reconciliation.
The model equations are analyzed, and the variables are
sorted: measured variables are redundant (and thus can
be validated) or just determined; unmeasured variables
are determinable or not. When all variables are either
measured or observable, the data reconciliation problem
can be solved to provide an estimate for all state variables.

The sixth step is the solution of the data reconciliation
problem. Each measurement is corrected as slightly as
possible in such a way that the corrected measurements
match all the constraints (or balances) of the process
model. Unmeasured variables can be calculated from
reconciled values using some model equations. The data
reconciliation problem consists in identifying the state
variables x verifying the set of constraints, and being close
to the measured values in the least square sense, which
results in the following objective function, for a nonlinear
steady state model, and for cases where some variables z
are not measured:
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Fig. 1. noise reduction by using
validation (raw values in red,
validated results in blue)

T T T T T i T
1o #1110 11 on2t 1132 11 143 11 154 25 i 218

TIME

min(y - x)T W(y-x)
)

st. f(x,z2)=0
where the model equations f are mass and component
balance equations, energy balance, equilibrium conditions,
link equations relating measured values to state variables
(e.g. conversion from mass fractions to partial molar flow
rates).

Inthe final step of the procedure, the software performs
aresult analysis. The magnitude of the correction for each
measurement is compared to its standard deviation. Large
corrections are flagged as suspected gross errors.

On the other hand, data mining uses large collections
of historical data to seek the most favorable combination
of operating parameters. Data Mining, also known as
Knowledge Discovery in Databases (KDD), is an
information extraction activity aiming at discovering new
knowledge and facts from large databases. Data Mining
uses a broad range of tools from statistics, automatic
learning, pattern recognition, database technologies,
visualization and artificial intelligence.

Manufacturing systems monitoring: sensors, PLCs, DCS,
and SCADA systems allow the operators to monitor and
control the manufacturing process in real time.

The whole measurements and actions (manual and
automatic) made on the process are recorded and stored
in historians that represent huge memories of the factory.
To perform historical data analysis, experts are digging into
the data off-line to detect flaws and improvement actions.
This is also a unique opportunity to learn more quickly
about the process and to detect hidden and complex
relationships between all parameters. Given the increasing
amount of these archives, the Data Mining solutions are
more than welcomed to maximize the benefits of this data
analysis task.

At the end of this life cycle, the knowledge synthesized
by the Data Mining analysis is used by operators to bring
improvements to their processes. This knowledge might
also be recorded in a knowledge base used by an artificial
expert system, e.g. in the form of a soft sensor.

Data clustering can reveal multiple ranges of operating
conditions, and correlation analysis allows one to detect
patterns in the data sets [5]. Both approaches provide help
in process monitoring, but have complementary assets,
as will be shown in the present case study.

An industrial case study

The case study focused on the steam system of a large
industrial site (metallurgical plant, including coke furnaces,
blast furnaces, steel plant, rolling mill, galvanization lines).
Three steam generators are in operation (1x 120 ton/h, 130
bar, 530°C, 2x 100 T/h, 70 bar, 510°C). They mainly supply
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steam on site, but back pressure and condensing turbines
also generate power. Multiple fuels differing in quality and
cost can be burnt; some of them are by-products of the
process (coke oven gas and low heating value blast furnace
gas) and must be used in priority, while other imported
fuels (natural gas and heavy fuel oil) come as supplements.

The goal of the study is to evaluate the energy efficiency
of the steam generators, and to identify ways to increase
the steam production, and consequently to raise the
potential for electricity generation.

Methodology

Process data is collected automatically and values of
the main process variables can be retrieved from the
process information management system. Each of the 3
steam generators was first studied independently. Values
for 70 process measurements were retrieved for a 5>-month
period, using 10 min averages.

The performance indices, like the thermal efficiency,
are not measured directly, and must be evaluated from
several measured variables. However the measurement
uncertainty propagates to the estimates of the performance
parameters, thus some noise reduction technique is
needed to extract useful information. A steady state data
reconciliation model was developed using Belsim-Vali
software [4] and all data sets were processed in order to
evaluate and validate several key performance indices,
such as the boiler efficiency, the steam production, the fuel
consumption, the oxygen content in the combustion gas.

The data base was also processed using data mining
tools (PEPITo Data Mining toolbox, developed by Pepite
[5, 6]). Several tools were exploited for data analysis:
histograms, scatter plots, dendrograms, correlation analysis
and principal component analysis [7]. Other tools were
used later for modeling and knowledge discovery, like
decision trees [8], artificial neural networks [9], and K-
Means [10].

Data processing

The first attempt was to calculate the key performance
indices using directly the raw measurements, but this
provided little useful information, due to measurement
uncertainty and noise. For instance, trying to calculate the
energy efficiency directly from the measured values led to
very noisy estimates, and sometimes unfeasible values
(e.g. efficiency above 100%).This could be corrected using
validated estimates (fig. 1). Adding validation results (e.g.
validated efficiency) to the raw data sets provided
additional dimensions to explore. Correlations between
process variables and efficiency parameters were much
clearer.
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Data reconciliation allowed also detecting failing
sensors: for instance, the measurement of oxygen
concentration in the stack gas of one generator was
systematically wrong. Temperature measurements located
at the outlet of an air preheater were also flagged. These
measurements were temporarily discarded, but data
validation allowed obtaining estimates for those variables.
Faulty equipment was also diagnosed: the efficiency of one
pump was clearly below standard, and the equipment was
replaced, which resulted in immediate savings.

In afew cases, the validation program could not provide
a reliable answer, due to missing measurements for non
redundant variables (temporary sensor failure), or due to
convergence to a solution with large measurement
corrections (thus with probable gross errors). These
failures could be traced to operating conditions where the
steady state assumption was not correct, and where
operating parameters were modified suddenly (start up or
shutdown of a boiler, change in fuel). The data mining
toolbox allowed designing a filtering strategy that is able
to detect most of the data sets where the validation
program would fail (fig. 2); in this case, because of the
poor status of the instrumentation system (occasional
missing data) or because transients causing data
inconsistent with steady state operation. Furthermore a
neural network has been trained to provide estimates of
the suspicious or missing measurements, thus allowing the
validation program to return useful results in almost all
cases.

As an example, 6433 data sets have been processed by
data validation, resulting in precise estimates of the thermal
efficiency of one steam generator. 1335 validation results
were used as a training set in order to tune a neural network
able to reproduce validated efficiency using raw measured
values. The other data set were used to validate the
predictive capability of the neural net.

Because the training has associated validated and raw
measurement values, the neural network reproduces not
only the relationship between process variables and
efficiency, but it also involves the correction of the
measurement bias (fig.3). It involves two 10-neurones
hidden layers and handles 38 process inputs. This model
is able to predict validated efficiency with a standard
deviation of 0.085%, even when the validation c? test detects
the presence of gross errors. This estimate is now displayed
in real time in the control room (thus much faster than the
validated value, that is available every 15 minutes), and
provides a useful reference to the operator, who has some
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Fig. 3. Efficiency predicted by neural net, compared to validated
estimates

83_ 84 85
Efficiency (%)
Fig. 4. Histogram: efficiency variation for one steam generator

immediate feedback when process parameters are
modified.

The use of such a tool does not replace at all data
reconciliation: in fact the neural network has to be trained
periodically with updated reconciled values, in order to
integrate changes in the process conditions, such as
calibration or replacement of sensors. Furthermore the
validation results are more complete.

Extrapolating our findings, we suggest that the synergy
of both techniques allows to display most wanted key
performance indices in real time and to access more
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numerous quality information data to optimize operation.
Let us mention the possibility to access in real time the
validated parameters to be compared to the set points in
Advanced Process Control systems.

The next step was to analyze the variability in the
operating conditions, in order to try to identify those leading
to the best efficiency. The range of efficiency variation is
approximately 10%, as shown in figure 4.

The root causes for efficiency variations were explored
by building a decision tree in order to classify all data sets.
Figure 5 shows that just a few variables are needed to
explain most of the variability. The most significant
parameters appear to be:

1.the mixed gas lower heating value (50%)

2.the combustion chamber temperature(10%)

3.the boiler feed water flow rate (2%)

Results and discussions

This analysis provides clues on ways to improve the
operation. The main decision has been to improve the
control of excess air. The second one is to take advantage
of design differences between the boilers, to select the right
combination of boilers to operate according to the
composition of the gas mix available. Coke oven gas is
richer in hydrogen than blast furnace waste gas, and
produces a flame that radiates better. This results in a
difference in the internal temperature profiles, and a small
but significant difference in efficiency.

Conclusions and perspectives for future work

This case study shows clearly that data driven
techniques and model based validation can operate in
parallel and benefit from each other. Synergistic effects
have been demonstrated: data validation is able to reduce
the uncertainty on measured process variables and
calculated values of performance indicators. Working with
reconciled data helps data mining in the identification of
efficient operating conditions, and in the detection of
abnormal process states.
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Fig. 5. decision tree to classify operating
conditions according to efficiency
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Future developments are going on. They focus on the
inclusion of the regression models in a decision tool, that
should help the operator in optimizing the load distribution
among all the available steam generators, in order to
maximize the energy efficiency for a given power demand
and a given gas mix availability.
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