# Synthesis and Characterization of Some New 2-Methyl-O-Acyl-Oximino-Dibenz[b,e]Oxepins

# CARMEN LIMBAN<sup>1</sup>\*, ALEXANDRU- VASILE MISSIR<sup>1</sup>, ILEANA CORNELIA CHIRIPÃ<sup>1</sup>, GEORGE MIHAI NIPULESCU<sup>1</sup>, BOGDAN DRÃGHICI<sup>2</sup>

<sup>1</sup>University of Medicine and Pharmacy "Carol Davila", Department of Pharmaceutical Chemistry, 6 Traian Vuia, 020956, Bucharest, Romania

<sup>2</sup>The Organic Chemistry Center of Romanian Academy "Costin C.D. Nenitescu", 202B Splaiul Independentei, 060023, Bucharest, Romania

This paper is a continuation of our research and presents the chemical modeling that we made on the dibenz[b,e]oxepinic system, with the aim of obtaining new compounds with potential antidepressive action, that contain in the same molecule two pharmacologically active elements: the dibenzoxepin system and the oximinic group. For the new compounds synthesized, we used as intermediate substance 2-methyl-6,11-dihydro-dibenz[b,e]oxepin-11(6H)-one, prepared by cyclizing the 2-(4-methyl-phenoxymethyl)-benzoic acid (which resulted from phtalide and potassium p-cresolate). After treating the aforementioned ketone with hydroxylamine hydrochloride, we obtained 2-methyl-11-hydroxyimino-6,11-dihydro-dibenz[b,e]oxepin. This oxime was acylated with different substituted benzoic acid chlorides and we obtained the 2-methyl-O-acyl-oximino-dibenz[b,e]oxepins. We established the optimal reaction conditions to synthesize the new compounds with high purity and yields. The new compounds, which have not been mentioned in the literature concerning this domain, have been characterized by their physical constants (melting point, solubility), structurally by NMR, IR analysis and by elemental analysis. To obtain new compounds from the dibenz[b,e]oxepins. The spectral and elemental analysis confirmed the final and intermediate compounds structures and also the synthesis that we had done.

*Keywords: dibenz[b,e]oxepin, <sup>1</sup>H-NMR, <sup>13</sup>C-NMR* 

The present application is a continuation-in-part of our research concerning the synthesis and characterization of new O-acyl-dibenz[b,e]oxepins [1-6].

The remarkable pharmacological efficiency of the compounds with dibenz[b,e]oxepinic structure such as Doxepine, known for antidepressive action and low side effects, and the positive results of the previous pharmacological tests effectuated with some substances with the same structure, synthesized by us, led us to obtain new compounds in the dibenz[b,e]oxepin series.

In the case of dibenz[b,e]oxepins previously synthesized, the pharmacological tests relevated that same compounds are psychoactivators and others are sedatives and anxiolitics [7-10].

Furthermore, the antidepressive action will be investigated for a possible use of this substances in therapeutics.

We made the chemical modeling and combined in the same molecule the dibenz[b,e]oxepinic system and the oximinic group, double bound with the carbon from 11-position of this nucleus.

# **Experimental part**

All melting points were recorded with an Electrothermal 9100 apparatus and are uncorrected.

The<sup>1</sup>H-NMR spectra were obtained at 300MHz and the <sup>13</sup>C-NMR spectra were recorded at 75.075MHz with a Gemini 300BB apparatus using solutions in chloroform-d<sub>1</sub> as solvent and tetramethylsilane as internal standard.

The IR spectra were performed using potassium bromide tablet, with a Biorad FTS 135 apparatus.

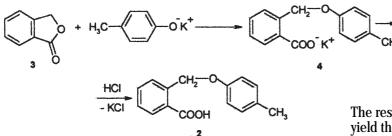
The elemental analysis was realized using a Perkin Elmer CHNS/ O Analyser Series II 2400 apparatus.

#### The synthesis of 2-(4-methyl-phenoxymethyl)-benzoic acid

A solution containing 5.4  $\hat{g}$  (0.05 mol) of freshly distilled *para*-cresol (Mol wt 108.13) in 30 mL xylene was placed in a round-bottom flask, equipped with a water removing device. Subsequently, 3.10 g (0,055 mol) potassium hydroxide (Mol wt 56,11) were added.

The reaction mixture was refluxed until 0.9 mL resulting water was removed by azeotropic distillation while potassium *para*-cresolate precipitated at the bottom.

6.7 g (0.05 mol) Phtalide (Mol wt 134.14) was added and the mixture was refluxed until it solidified.


The precipitate was heated for solubilisation with 10% potassium hydroxide solution and then was diluted with 50 mL of water.

The aqueous phase was separated and acidulated with 1M hydrochloric acid solution until the mixture became acid (*p*H 3), when 2-(4-methyl-phenoxymethyl)-benzoic acid precipited. The resulting precipitate, which crystallized from water: ethanol (1: 1) mixture, shows a m.p. 126-129°C. 7.2 g of 2-(4-Methyl-phenoxymethyl)-benzoic acid (Mol wt 242.26) resulted (59.5% yield).

# *The synthesis of 2-(4-methyl-phenoxymethyl)-benzoyl chloride*

4.85 g (0.02 Mol) of 2-(4-methyl-phenoxymethyl)-benzoic acid (Mol wt 242.26), 30 mL of dry 1,2-dichloroethane and 5 g (3 mL) (0.042 mol) of thionyl chloride (Mol wt 119,  $d_4^{25}$  1.638) were placed in a round-bottom flask equipped with

<sup>\*</sup> email: carmen\_limban@yahoo.com



condenser and drying tube. The mixture was refluxed for 3 hours. The thionyl chloride in excess and the solvent were removed by reduced pressure. For the next step, the 2-(4methyl-phenoxymethyl)-benzoic acid chloride was used in the crude status.

1,2-Dichloroethane was anhydrized over calcium chloride and distillated at normal pressure.

#### The synthesis of 2-methyl-6,11-dihydro-dibenz[b,e]oxepin-11(6H)-one

2.8 g (0.02 Mol) of anhydrous aluminium chloride (Mol wt 133.6) and 15 mL of 1,2-dichloroethane were placed in a round-bottom flask equipped with stirrer, condenser and drying tube, thermometer and addition funnel.

The suspension was cooled to 0°C by stirring. The 5.2 g (0.02 mol) of 2-(4-methyl-phenoxymethyl)-benzoyl chloride (Mol wt 260.70), solubilised in 25 mL of 1,2-dichloroethane, was added in portions, with the mixture maintained at 0° to 5°C, during the addition period.

After the acid chloride was added, the reaction mixture was stirred at 5° to 20°C for one hour and then, for another hour at 20°C.

The reaction mixture was poured into 5% hydrochloric acid solution and stirred until the complex aluminium chloride: ketone has been decomposed.

The organic and aqueous layers were then separated and the organic layer was washed once with 5% sodium hydroxide solution and twice with water, dried (anhyd. calcium chloride), treated with decolorizing charcoal and evaporated under vacuum to yield the 2-methyl-6,11dihydro-dibenz[b,e]oxepin-11(6H)-one (Mol wt 224.25), which was recrystallized from hexane (4.25 g, 94.5% yield, m.p. 106- 108ºC).

#### The synthesis of 2-methyl- 11-hydroximino-6,11-dihydrodibenz[b,e]oxepin

11.2 g (0.05 Mol) of 2-methyl-6,11-dihydro-dibenz[b,e] oxepin-11(6H)-one (Mol wt 224.25) and 10.5 g (0.15 mol) of hydroxylamine hydrochloride (Mol wt 69.5) were boiled under reflux in 100 mL of pyridine for 96 hours. The pyridine is subsequently distilled off in a vacuum, the residue is triturated with water, suction-filtered, dried and recrystallized from isopropanol (7.3 g, 61% yield, m.p. 206-209°C, Mol wt 239.26).

#### The synthesis of the new 2-methyl-O-acyl-oximinodibenz[b,e]oxepins (general procedure)

3.83 g (0.016 Mol) of 2-methyl-11-hydroximino-6,11dihydro-dibenz[b,e]oxepin (Mol wt 239.26) were solubilised in anhydrous benzene by refluxing in a roundbottom flask equipped with condenser and drying tube. To this solution was added dropwise a solution of 0.016 mol acyl chloride in 10 mL anhydrous benzene and 1.27 g (1.3 mL) (0.016 mol) dry pyridine (Mol wt 79.09, d<sup>25</sup> 0.9780) and the mixture was refluxed for two hours.

After cooling and filtered, the solvent was removed by distillation and the residue was triturated with isopropanol.

Scheme 1. The synthesis of 2-(4-methylphenoxymethyl)-benzoic acid

The resulting solid was recrystallized from isopropanol to yield the title compound.

# **Results and Discussions**

For the new compounds synthesis we used as intermediate substance 2-methyl-6,11-dihydro-dibenz [b,e]oxepin-11(6H)-one (**1**).

The synthesis has three stages.

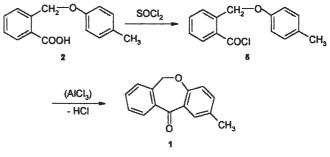
#### 1. The synthesis of 2-(4-methyl-phenoxymethyl)-benzoic acid (scheme 1)

In the first stage, the 2-(4-methyl-phenoxymethyl)benzoic acid (2) was prepared by treating the phtalide (3) with potassium *para*-cresolate in xylene.

The resulted potassium salt of 2-(4-methyl-phenoxymethyl)-benzoic acid (4) has a good solubility in an aqueous solution of 10% sodium hydroxide and it can be separated from xylene. The acid **2** is precipitated using a mineral acid solution.

The potassium salt of *para*-cresol was obtained using the *para*-cresol and potassium hydroxide in xylene, the resulting water being removed by azeotropic distillation.

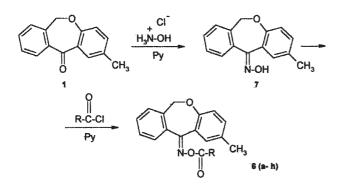
The reactions are presented in the scheme 1.


# 2. The synthesis of 2-methyl-6,11-dihydro-dibenz[b,e] oxepin-11(6H)-one (scheme 2)

The 2-methyl-6,11-dihydro-dibenz[b,e]oxepin-11(6H)one (1) was synthetized by a Friedel-Crafts cyclization of the 2-(4-methyl-phenoxymethyl)-benzoic acid chloride (5) in dry 1,2-dichloroethane.

The acid chloride 5 resulted by refluxing the acid 2 with thionyl chloride in excess (the most favorable is 25%), but can be obtained also by using different anhydrous solvents as reaction medium, like 1,2-dichloroethane.

The desired ketone can be prepared directly from the acid 2 using various agents for anhydrization (e.g. polyphosporic acid), but the yields was smaller.


The scheme 2 presents the mentioned reactions.



Scheme 2. The synthesis of 2-methyl-6,11-dihydrodibenz[b,e]oxepin-11(6H)-one

# 3. The synthesis of the new 2-methyl-O-acyl-oximino*dibenz[b,e]oxepins (scheme 3)*

The new compounds (6) were prepared by acylation of the 2-methyl-11-hydroximino-6,11-dihydro-dibenz[b,e] oxepin (7) with different benzoic acid chlorides, in dry benzene, in the presence of anhydrous pyridine as a proton fixator.



Scheme 3. The synthesis of the new 2-methyl-O-acyl-oximinodibenz[b,e]oxepins

The oxime **7** resulted by treating the ketone **1** with hydroxylamine hydrochloride in the presence of pyridine.

The reactions are presented in the scheme 3 and the structures of the new compounds (6a-h) are presented in table 1.

The structure, molecular formula, molecular weight, melting point and yield of the new 2-methyl-O-acyloximino-dibenz[b,e]oxepins are presented in table 1.

The new compounds are solid, crystallized, white or light yellow, soluble at normal temperature in acetone, benzene, toluene, xylene, chloroform, dichloromethane and dichloroethane, by heating in inferior alcohols, insoluble in water.

#### Spectral data

<sup>1</sup> The structures of the new 2-methyl-O-acyl-oximinodibenz[b,e]oxepins were established through NMR and IR spectroscopy.

<sup>1</sup>H-NMR spectra of the new dibenz[b,e]oxepins are divided into two spectra corresponding to the oxepinic system and to the acyl radical attached to the oximino group.

The protons of the methyl group situated in the second position of dibenz[b,e]oxepin nucleus gives a singlet signal in the range 2.24-2.37 ppm.

The presence of an oxygen in the 5<sup>th</sup> position makes possible the existence of sin-anti isomery, materialised in our spectra through the dedoublation of the protons and the carbons signals, but the diference between chemical shifts of the methylene group is insignificant.

The most unscreened proton is H<sup>1</sup>, and the most screened is H<sup>4</sup>.

The individual attribution of the H<sup>1</sup>-H<sup>4</sup> protons were done using the connectivity H-H experiments **(COSY)**. This experiment wasn't possible for the protons H<sup>7</sup>-H<sup>10</sup> because of their signals (multiplets) overlapping in the range 7.29-7.63 ppm.

For the protons H<sup>14</sup>-H<sup>18</sup> the complete attributions were made (except the 6e compound), the most unscreened protons being H<sup>14</sup> and H<sup>18</sup> which are situated in the *ortho* position.

The most important <sup>1</sup>H- NMR spectral values ( $\delta$ , ppm, J, Hz) for the compounds, are presented in table 2.

The <sup>13</sup>C-NMR spectra were recorded in CDCl<sub>3</sub>. The carbon atoms attributions outcame from the spectra recorded by complete decoupling and sequence pulse APT (Attached Proton Test), and also from two-dimensional heteronuclear correlation experiments (COSY H-<sup>13</sup>C or HETCOR).

The carbon atoms were identified by 2D experiments because the protons  $H^1$ - $H^4$  have well-defined attributions. The methyl group produces a signal at 20.2-20.3 ppm. The methylene group (C<sup>6</sup>) appears in the range 70.4-70.5 ppm, the differences between the chemical shifts of the two sinanti isomers being unsignificant.

In the oxepinic system, the carbon atom  $C^4$  is the most screened tertiary carbon atom and the  $C^{4a}$  is the most unscreened quaternary carbon atom, because of the presence of the oxigen atom.

| N-O-C-R CH <sub>3</sub> |                                       |                                                   |           |                         |            |  |  |  |  |  |
|-------------------------|---------------------------------------|---------------------------------------------------|-----------|-------------------------|------------|--|--|--|--|--|
| <b>N</b> T              | D                                     | Molecular                                         | Molecular | Melting                 | *** * **** |  |  |  |  |  |
| No.                     | R                                     | formula                                           | weight    | point ( <sup>0</sup> C) | Yield(%)   |  |  |  |  |  |
| ба.                     | -C <sub>6</sub> H <sub>4</sub> F(2)   | C <sub>22</sub> H <sub>16</sub> FNO <sub>3</sub>  | 361.36    | 176.2- 178.6            | 53.1       |  |  |  |  |  |
| 6b.                     | -C <sub>6</sub> H <sub>4</sub> F(3)   | C22H16FNO3                                        | 361.36    | 170.4- 172.1            | 63,5       |  |  |  |  |  |
| 6с.                     | -C6H4Cl(2)                            | C22H16CINO3                                       | 377.82    | 140.5- 142.5            | 56.7       |  |  |  |  |  |
| 6d.                     | -C <sub>6</sub> H <sub>4</sub> Cl(4)  | C22H16CINO3                                       | 377.82    | 184.3- 186              | 76.6       |  |  |  |  |  |
| 6e.                     | -C <sub>6</sub> H <sub>4</sub> Br (2) | C <sub>22</sub> H <sub>16</sub> BrNO <sub>3</sub> | 422.27    | 130.4- 132.7            | 67.8       |  |  |  |  |  |
| 6f.                     | -C <sub>6</sub> H <sub>4</sub> Br (3) | C22H16BrNO3                                       | 422.27    | 164.4-166.9             | 73.3       |  |  |  |  |  |
| 6g.                     | -C <sub>6</sub> H <sub>4</sub> Br (4) | C22H16BrNO3                                       | 422.27    | 186.3- 188.1            | 71.5       |  |  |  |  |  |
| 6h.                     | -C6H4I(2)                             | C <sub>22</sub> H <sub>16</sub> INO <sub>3</sub>  | 469.27    | 150,1-152,6             | 57.7       |  |  |  |  |  |

 Table 1

 THE NEW COMPOUNDS CHARACTERISTICS

| $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$ |                                  |                  |                           |                  |           |                                                           |                 |                    |                                    |                                |                                    |                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|---------------------------|------------------|-----------|-----------------------------------------------------------|-----------------|--------------------|------------------------------------|--------------------------------|------------------------------------|---------------------------|
| -CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R                                | H                | H                         | H <sup>4</sup>   | H         | H'H'H'H'                                                  | H <sup>10</sup> | Ни                 | H12                                | H10                            | H17                                | Hu                        |
| 2.32<br>s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13<br>13<br>F                    | 7,69<br>d<br>2.5 | 7.15<br>dd<br>8.4;<br>2.5 | 6.80<br>d<br>8.4 | 5.16<br>s | 7,40- 7,55 m                                              | 7.61<br>m       | •<br>•             | 7.09<br>ddd<br>9.7;<br>8.3;<br>1.1 | 7.40-<br>7.55 m                | 7.19<br>td<br>9.3;<br>7.6;<br>1.0  | 7.87<br>td<br>7.6;<br>1.9 |
| 2.32<br>s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10<br>13<br>14 15<br>15          | 7.70<br>d<br>2.4 | 7.17<br>dd<br>8.4;<br>2.4 | 6.81<br>d<br>8.4 | 5.17<br>s | 7.35- 7.58 m                                              |                 | 7.68-<br>7.71<br>m | -                                  | 7.26<br>tdd<br>8.4;<br>2.7;1.1 | 7,39<br>ddd<br>9.3;<br>8.2;<br>5.5 | 7.35-<br>7.58<br>m        |
| 2.31<br>s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18<br>13<br>13<br>14<br>15<br>Ci | 7.70<br>d<br>2.4 | 7.15<br>dd<br>8.4;<br>2.3 | 6.80<br>d<br>8.4 | 5.15<br>s | 7.35- 7.56 m<br>7.35- 7.56 m<br>7.54<br>dt<br>6.7;<br>1.5 |                 | -                  | 7.35- 7.46<br>m                    |                                | 7.24<br>m                          | 7.61<br>dd<br>7.9;<br>1.7 |
| 2.31<br>s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 17 16<br>13 14 15             | 7,68<br>d<br>2,3 | 7.15<br>dd<br>8.4;<br>2.3 | 6,80<br>d<br>8,4 | 5.16<br>s | 7.44- 7.57 m                                              |                 | 7.81<br>d<br>8.7   | 7.37<br>d<br>8.7                   | -                              | 7.37<br>d<br>8.7                   | 7.81<br>d<br>8.7          |
| 2.24<br>s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18<br>17<br>13<br>14<br>16<br>Br | 7.62<br>d<br>2.3 | 7.08<br>dd<br>8.4;<br>2.3 | 6.72<br>d<br>8.4 | 5.1 s     | 7.3                                                       |                 |                    | 7.55 m                             |                                |                                    |                           |
| 2.32<br>s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 17<br>13 16<br>14 15 Br       | 7.69<br>d<br>2.2 | 7.17<br>dd<br>8.4;<br>2.2 | 6.81<br>d<br>8.4 | 5.16<br>s | 7.46- 7.61 m                                              |                 | 8.01<br>t<br>1.8   | -                                  | 7.82 dt<br>7.8;<br>1.4         | 7.28<br>t<br>8                     | 7.67<br>dt<br>7.8;<br>1.4 |
| 2.37<br>s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 17<br>13 16 Br                | 7.74<br>d<br>2.2 | 7.22<br>dd<br>8.4;<br>2.2 | 6.86<br>d<br>8.4 | 5.22<br>s | 7.52- 7.63 m                                              |                 | 7.79<br>d<br>8.5   | 7.8<br>d<br>8.5                    | -                              | 7,8<br>d<br>8.5                    | 7.79<br>d<br>8.5          |
| 2.24<br>s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | 7.63<br>d<br>2.3 | 7.17<br>dd<br>8.4;<br>2.3 | 6.73<br>d<br>8.4 | 5.1 s     | 7.29- 7.40 m                                              | 7.45<br>m       | -                  | 7.89<br>dd<br>7.9;<br>1.2          | 7.05 td<br>7.8;<br>1.7         | 7.25<br>td<br>7.8;<br>1.2          | 7.45<br>dd<br>7.8;<br>1.1 |

**Table 2** <sup>1</sup>H-NMR DATA FOR THE COMPOUNDS 6a-h (δ ppm, J Hz)

| $\begin{array}{c} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ &$ |                  |                  |         |       |       |             |       |       |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|---------|-------|-------|-------------|-------|-------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18 17 16         |                  |         |       |       |             |       |       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F 14 10          | 14 15 F          | CI 14 " | 14 15 | Br    | 14 15<br>Br | 14 15 | 14 15 |  |  |  |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 130.3            | 130.3            | 130.2   | 130.6 | 130.3 | 130.6       | 130.5 | 130.4 |  |  |  |
| Cla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 117.3            | 118.9            | 118.9   | 119.1 | 119.0 | 119.0       | 119.0 | 119.1 |  |  |  |
| C <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130.7            | 130,6            | 130,7   | 130.6 | 130.7 | 130,8       | 130.8 | 130,7 |  |  |  |
| C <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 133.6            | 133.7            | 133.6   | 133.7 | 133.6 | 133.7       | 133.7 | 133.7 |  |  |  |
| C <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 116.8            | 116.4            | 119.7   | 119.8 | 119.7 | 119.8       | 119.7 | 119.7 |  |  |  |
| C <sup>4a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 155.4            | 155.4            | 155.3   | 155.5 | 155.4 | 155.5       | 155.4 | 155.4 |  |  |  |
| C°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70.5             | 70.5             | 70.4    | 70.5  | 70.5  | 70,5        | 70.5  | 70.5  |  |  |  |
| C'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 128.4            | 128.3            | 128.3   | 127.9 | 128.3 | 127.8       | 128.3 | 128.4 |  |  |  |
| C <sup>7a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 134.5            | 134.4            | 134.3   | 134.5 | 134.4 | 134,4       | 134.4 | 134.5 |  |  |  |
| C <sup>8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130.7            | 130.3            | 131.0   | 130.5 | 130.5 | 130,4       | 130.5 | 130.6 |  |  |  |
| C <sup>9</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128.4            | 128.4            | 128.4   | 127.9 | 128.4 | 127.9       | 128,6 | 128.4 |  |  |  |
| C <sup>10</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 128.2            | 127.9            | 128.0   | 127.2 | 128.0 | 127.7       | 127.8 | 127.8 |  |  |  |
| C <sup>108</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 132.7            | 132.9            | 130.7   | 130.9 | 132.8 | 130,6       | 130,6 | 130.8 |  |  |  |
| C <sup>II</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 163.4            | 160.8            | 163.1   | 162.9 | 163.6 | 162.3       | 163,0 | 164.1 |  |  |  |
| C <sup>12</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 164.8            | 164.8            | 165.1   | 164.7 | 165.3 | 164.9       | 164.7 | 165.3 |  |  |  |
| C <sup>13</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 119.1<br>(21.0)  | 132.9<br>(8.8)   | 132.7   | 133.7 | 132.8 | 133.0       | 133.7 | 141.4 |  |  |  |
| C <sup>14</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 161.7<br>(261.0) | 116.7<br>(20.5)  | 133.7   | 131.0 | 121.7 | 133.7       | 131.1 | 94.1  |  |  |  |
| C <sup>15</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 117,1<br>(21.1)  | 164.1<br>(246.2) | 130,5   | 128.9 | 132.6 | 122.6       | 131.9 | 141.4 |  |  |  |
| C <sup>16</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 134.8<br>(9.0)   | 116.6<br>(23.1)  | 133.6   | 139.9 | 134.3 | 136.2       | 127.5 | 133.7 |  |  |  |
| C <sup>17</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 124.1            | 125.5<br>(3.2)   | 126.5   | 128.9 | 127.0 | 130.1       | 131.9 | 128.0 |  |  |  |
| C <sup>18</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 128.2<br>(12.8)  | 125.4            | 131.2   | 131.0 | 131.0 | 128.1       | 131.1 | 132.7 |  |  |  |
| 2-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.2             | 20,3             | 20.2    | 20.2  | 20.2  | 20.2        | 20.3  | 20.2  |  |  |  |

 Table 3

 <sup>13</sup>C-NMR DATA FOR THE

 COMPOUNDS 6a-h (δppm)

REV. CHIM. (Bucure<sup>o</sup>ti) ◆ 58 ◆ Nr. 2 ◆ 2007

|            |                                      | THE ELF | Table 4<br>EMENTAL |      | 5    |           |      |  |  |
|------------|--------------------------------------|---------|--------------------|------|------|-----------|------|--|--|
| N-OC-R CH3 |                                      |         |                    |      |      |           |      |  |  |
| No.        | R                                    |         | %                  |      | %    | N%        |      |  |  |
|            |                                      | C.      | •.                 | C.   | 0.   | <b>C.</b> | 0,   |  |  |
| ба.        | $-C_{6}H_{4}F(2)$                    | 73.06   | 72.82              | 4.43 | 4.40 | 3.87      | 3.92 |  |  |
| 6b.        | -C <sub>6</sub> H <sub>4</sub> F(3)  | 73.06   | 73.21              | 4.43 | 4.38 | 3.87      | 3.87 |  |  |
| 6с.        | $-C_6H_4Cl(2)$                       | 69.87   | 69.64              | 4.23 | 4.21 | 3.71      | 3.79 |  |  |
| 6d.        | $-C_6H_4Cl(4)$                       | 69.87   | 70.03              | 4.23 | 4.27 | 3.71      | 3.68 |  |  |
| 6e.        | $-C_6H_4Br(2)$                       | 62.52   | 62.69              | 3.79 | 3.87 | 3.32      | 3.31 |  |  |
| 6f.        | $-C_6H_4Br(3)$                       | 62.52   | 62.38              | 3.79 | 3.84 | 3.32      | 3.35 |  |  |
| 6g.        | $-C_6H_4Br(4)$                       | 62.52   | 62.17              | 3.79 | 3.79 | 3.32      | 3.29 |  |  |
| 6h.        | -C <sub>6</sub> H <sub>4</sub> I (2) | 56.26   | 56.41              | 3.41 | 3.43 | 2.98      | 2.92 |  |  |

The signal corresponding to the C<sup>12</sup> atom appears in the range 164.7-165.3 ppm and the signal of C<sup>11</sup> can be found in the range 160.8- 164.1 ppm.

For exemplification, we present in the table 3, the <sup>13</sup>C-signal attributions for the new compounds.

In the IR spectra the caracteristic bands for the new 2methyl-O-acyl-oximino-dibenz[b,e]oxepins are (cm<sup>-1</sup>): -CH<sub>2</sub>-O- (vCH<sub>2</sub> sym: 2848.3- 2867.6; vCH<sub>2</sub> asym: 2921.7-2929.4;  $\delta$ CH<sub>2</sub> sym: 1349.8- 1380;  $\delta$ CH<sub>2</sub> asym: 1487.7- 1490.2; vC-O-C sym: 1002.4- 1008.5; vC-O-C asym: 1287- 1291.3); -CH<sub>3</sub> (vCH<sub>3</sub> sym: 2848.3-2867.6; vCH<sub>3</sub> asym: ~ 2960); -O-C=O (vC=O: 1754.2- 1760.4; vC-O 1224.7- 1253.1); vC=N: 1612.2- 1650; aromatic rings (v=C-H: 3018.1- 3045.2; vC=C: 1555.3- 1612.2); vC-F: 1059.3- 1077.1; vC-Cl: 743.5- 749.4; vC-Br: 592- 597,1.

The elemental analysis is presented in table 4.

The spectral data using <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, IR spectroscopy and the elemental analysis confirmed the structure of the obtained compounds.

# Conclusions

- Following the synthesis of new compounds with potential pharmacological activity, we obtained eight new 2-methyl-O-acyl-oximino-dibenz[b,e]oxepins.

- The compounds are prepared by acylating 11-oximino-2-methyl-6,11-dihydro-dibenz[b,e]oxepin with different halo substituted benzoic acid chlorides. - The obtained compounds have been characterized by some physical properties.

- The <sup>1</sup>H-NMR, <sup>1</sup><sup>3</sup>C-NMR, IR spectral parameters and elemental analysis confirm the structure of the prepared compounds.

# References

1. LIMBAN, C., MISSIR, A., CHIRIÞÃ, I., STECOZA, C., Farmacia, 43, nr. 5-6, 1995, p.19

2. LIMBAN, C., MISSIR, A., IOVU, M., LOLOIU, T., Conferința de Chimie °i Inginerie Chimicã Bucure°ti, 16- 18 octombrie 1997- Lucrările Conferinței, **2**, 1997, p. 91

3. LIMBAN, C., MISSIR, A., Farmacia, 46, nr. 2, 1998, p. 15

4. LIMBAN, C., CHIRIÞÃ, I., STECOZA, C., MORU<sup>a</sup>CIAG, L., NUÞÃ, D., Analele Universității Ovidius Constanța, seria: <sup>a</sup>tiințe Medicale-Farmacie, **1**, nr. 1, 2003, p. 153

5. LIMBAN, C., MISSIR, A., Farmacia, 52, nr. 6, 2004, p. 41

LIMBAN, C., MISSIR, A., CHIRIÞÃ, I., Farmacia, 53, nr. 1, 2005, p. 36
 CRISTEA, A., NEGRE<sup>a</sup>, S., LIMBAN, C., IONESCU, E., Farmacia, 45, nr. 4, 1997, p. 17

8. CRISTEA, A., MORTEANU, E., NEGRE<sup>a</sup>, S., ALEXANDRU, A., LIMBAN, C., MORU<sup>a</sup>CIAG, L., Farmacia, **46**, nr. 4, 1998, p. 31

9. CRISTEA, A., MORTEANU, E., NEGRE<sup>a</sup>, S., LIMBAN, C., BRĂTIANU M., Farmacia, **48**, nr. 1, 2000, p. 11

10. CRISTEA, A., MORTEANU, E., MARINECI, C., D., LIMBAN, C., Farmacia, **49**, nr. 2, 2001, p. 11

Manuscript received: 5.11.2006